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Abstract: Areal deformation monitoring based on point
clouds can be a very valuable alternative to the established
point-based monitoring techniques, especially for defor-
mation monitoring of natural scenes. However, estab-
lished deformation analysis approaches for point clouds
donot necessarily expose the true 3D changes, because the
correspondence between points is typically established
naïvely. Recently, approaches to establish the correspon-
dences in the feature space by using local feature de-
scriptors that analyze the geometric peculiarities in the
neighborhood of the interest points were proposed. How-
ever, the resulting correspondences are noisy and contain
a large number of outliers. This impairs the direct appli-
cability of these approaches for deformation monitoring.
In this work, we propose Feature to Feature Supervoxel-
based Spatial Smoothing (F2S3), a new deformation anal-
ysis method for point cloud data. In F2S3 we extend the
recently proposed feature-based algorithms with a neural
network based outlier detection, capable of classifying the
putative pointwise correspondences into inliers and out-
liers based on the local context extracted from the super-
voxels. We demonstrate the proposed method on two data
sets, including a real case data set of a landslide located
in the Swiss Alps. We show that while the traditional ap-
proaches, in this case, greatly underestimate the magni-
tude of the displacements, our method can correctly esti-
mate the true 3D displacement vectors.
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1 Introduction

Despite the increasing use of point clouds to detect and
quantify changes of man-made and natural structures,
several challenges remain unresolved regarding the point
cloud-based deformation analysis [10]. In particular, these
include the estimation of 3D displacement vector fields,
parameterization of deformations and quantification of er-
ror probabilities such as false alarm rate and probability
of missed detection. These challenges are particularly de-
manding for point clouds of natural environments. Due
to the lack of regular structures and smooth objects that
could be represented with geometric primitives or free-
form shapes, the deformation analysis of natural scenes
is predominantly based on point cloud-based and surface-
based deformation models [18, 22].

Point cloud-based deformation models, traditionally
represented by the cloud-to-cloud (C2C) and multiscale
model-to-model cloud (M3C2) [14] methods, can be used
to compare the point clouds directly. Conversely, surface-
based models such as cloud-to-mesh (C2M) and mesh-to-
mesh (M2M), require that either one (C2M) or both (M2M)
point clouds are first triangulated and then the result-
ing meshes/point clouds are compared. The quantifica-
tion of the displacement magnitudes or vectors in these
models differs mostly in how correspondences among the
points are determined. With C2C, correspondences are es-
tablished by simply selecting the nearest point from the
other epoch. Other approaches incorporate some local ge-
ometric information by constraining the search for corre-
spondingpoints along the direction of the normal vector of
either the triangulated surface (C2M and M2M) or a plane
fitted to the neighboring points (M3C2). These naïve ways
of establishing the correspondences typically result in un-
derestimation of the displacement magnitudes in parts of
the point clouds that have changed (see Section 3). Fur-
thermore, the point cloud-based and surface-based mod-
els are incapable of correctly detecting and estimating the
in-plane deformations and rigid body motion [11]. A de-
tailed explanation of point cloud-based and surface-based
deformation models is available in [11].

Recently, [21] and [4] proposed to establish pointwise
correspondences for point cloud-based deformation mon-
itoring using the local feature descriptors. However, in [21]
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Figure 1: Schematic representation of the F2S3 workflow. In the first step, feature descriptors for each point in both point clouds are ex-
tracted and used to establish the putative set of correspondences. Independently, the reference epoch is segmented into supervoxels
(Section 2.4). The correspondences are then grouped according to the supervoxels and filtered using an outlier detection algorithm (Sec-
tion 2.3). The output of F2S3 is a robustly estimated displacement vector field. In this figure the points are colored according to a magnitude
based classification (green stable, red moved) but the algorithm outputs the real 3D displacement vectors.

RGB data is required together with the point clouds and
the correspondences are actually established in the RGB-
D space. Furthermore, despite the large progress that was
recently achieved in the performance of the local feature
descriptors [2, 5] the established correspondences are still
very noisy and contain a large amount of outliers (see Sec-
tion 2 and 3). These false correspondences originate from
various sources including, but not limited to, point cloud
resolution, noise of the point clouds, limited descriptive-
ness of the feature descriptors, and repetitive structures.
While theoretically several of the causes could be miti-
gated, it is practically infeasible that the amount of out-
liers will intrinsically be reduced to a level that would not
hinder the applicability of the local feature descriptors for
point cloud-based deformation monitoring.

In this work we therefore complement the idea of es-
tablishing the correspondences in feature space [21, 4]
with a neural network (NN)-based algorithm that takes a
set of putative correspondences as input andperformsabi-
nary classification into inliers and outliers. The inliers and
outliers denote the correct and false correspondences, re-
spectively. Hereinafter, these terms are used interchange-
ably. The proposed outlier detection step is based on the
local context and can be understood as local smoothing
that is spatially constrained within individual boundary
persevering supervoxels (see Section 2.4). We denote this
novel deformation analysis method for point cloud data
as Feature to Feature Supervoxel-based Spatial Smoothing
(F2S3).

We evaluate the applicability of F2S3 in an extensive
empirical investigation, comparing it to the traditional
methods as well as to the raw feature-based correspon-
dences. First, we compare the performance of the meth-
ods in a controlled environment on a data set of a rockfall
simulator acquired using a terrestrial laser scanner (Sec-
tion 3.1). Second, we compare the efficiency and perfor-
mance of the proposed outlier detection stepwith RANSAC
on two data sets (Section 3.1.5 and 3.2.3). Finally, we show
on a real case data set that the proposedmethod,which re-
lies solely on the geometric information intrinsically avail-
able in point clouds, is able to correctly estimate 3D dis-
placement vectors,while the traditional deformationmod-
els greatly underestimate the magnitudes and are inca-
pable of determining the direction of the displacement
vectors (Section 3.2.2).

Even though F2S3 performs favorably in the empirical
investigation performed herein, it should not be treated as
a replacement to the traditional methods. It should rather
be seen as a complementary method, which performs es-
pecially favorable on point clouds of sceneswith adequate
spatial features and large displacements. A complete, rig-
orous comparison of the available deformation analysis
methods, which would also show the limitations of F2S3,
would only be possible in a controlled environment cov-
ering all the possible scenarios, regarding e. g., type and
magnitude of the displacements, point cloud resolution,
and type and size of the objects in the scene. This is out of
the scope of this paper and is left for future work.
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2 Method

This section describes the proposed method F2S3 for esti-
mating a dense displacement vector field from point cloud
data (Figure 1). F2S3 consists of threemainmodules (i) a lo-
cal feature descriptor (3DSmoothNet) used to infer the fea-
ture vectors of all points in the point clouds of both epochs
(ii) a novel NN based outlier detection algorithm used to
robustify the initial set of correspondences established in
the feature space and (iii) a supervoxel segmentation algo-
rithm that provides the boundaries for the spatial smooth-
ing. It is important to note, that the workflow of F2S3 is
completely modular and the algorithms used to perform
the aforementioned steps, can—and with the progress of
the field probably will—be replaced in the future.

2.1 Neural networks – a brief description

The methods developed herein are based on deep learn-
ing and more specifically feed-forward and convolutional
NNs. In order to make the paper self-contained we provide
a brief description thereof. Further information are avail-
able in [1, 8].

Feed-forward NNs or multilayer perceptrons (MLPs)
are the quintessential deep learningmodels that allow ap-
proximating some (non-linear) function f : x Ü→ y based
on the training data T = {(xi, yi)}, i. e. data with corre-
sponding ground truth labels [8]. A feed-forward network
defines the mapping of the data xi ∈ ℝD to a discrete (clas-
sification) or a continuous (regression) output ŷ ∈ ℝK as
ŷi = f (xi; θ), where f is a composition of differentiable non-
linear functions (layers) and θ are the parameters of the
network.More formally, a single layer feed-forwardNNcan
be written as

ŷk = h(w
T
k x + bk) (1)

where wk ∈ ℝ
D are the weights, bk is the bias and yk is

the output with k = 1, ⋅ ⋅ ⋅ ,K denoting the dimension. The
non-linearity ofNNs is achieved through the non-linear ac-
tivation functions h(⋅), which are selected in the process
of designing the network architecture. In recent years, the
rectified linear unit (ReLU) [17] activation function defined
as h(⋅) = max(0, ⋅) is the default choice for the intermediate
layers, whereas the identity function and sigmoid function
(c. f. Eq. 7) are used in the last layer for regression and (bi-
nary) classification tasks, respectively [1, 8].

NNs are learning algorithms, which means that the
network has to be trained before it can be applied to a

specific task. During training, the parameters θ of the net-
work are optimized by minimizing a predefined loss func-
tion (error function) on the training data. Due to the non-
linearity of the layers, most loss functions become non-
convex. Therefore, NNs are typically trained byusing itera-
tive gradient-based optimizers e. g. [13], which aim at driv-
ing the loss to a lowvalue [8].Mainly due to thememory re-
strictions, the gradient descent is typically performed us-
ing only a randomly selected subset (mini-batch) of the
data in each iteration. This can be regarded as a stochastic
approximation of the gradient descent. Therefore, the it-
erative minimization of the loss function using randomly
selectedmini-batches is denoted as stochastic gradient de-
scent (SGD). At each training iteration, the values of the
parameters θ are updated relative to the gradient of the
loss function with respect to the parameters. This process
is commonly referred to as backpropagation.

Convolutional neural networks (CNNs) are a special
kind of feed-forward NNs, which use convolution instead
of generalmatrixmultiplication in at least one of the layers
[8]. CNNs became especially popular in computer vision,
where a grid-like topology—necessary for convolutions—
is naturally given e. g. pixels in images. Compared to the
traditional fully connected layers, convolutional ones offer
many advantages [1, 8]. Not only do they reduce the num-
ber of learnable parameters due to the parameter sharing,
but they are also equivariant to the translation of the in-
put. More information about CNNs is available in [8].

2.2 3DSmoothNet—3D local feature
descriptor

Wehave recently proposed 3DSmoothNet [5], a deep learn-
ing based 3D local feature descriptor, which has low out-
put dimension, high descriptiveness, and is fully rotation
invariant. In 3DSmoothNet, we combine the traditional
components of handcrafted descriptors, such as the esti-
mation of the local reference frame for achieving rotation
invariance, with the novel smoothed density value vox-
elization that is amenable to fully convolutional layers of
standard deep learning libraries. 3DSmoothNet is a non-
linear, learned function that maps the input, i. e. a vox-
elized spherical neighborhood of the point, to a low di-
mensional feature vector, by solely exploiting the local ge-
ometrical properties of the data.

Machine learning and especially deep learning algo-
rithms typically need a large amount of annotated data.
Specifically, to train 3DSmoothNet a large data set, con-
sisting of overlapping point clouds with ground truth cor-
respondences is required. Gathering training data of out-
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door scenes including the ground truth correspondences
for a typical geomonitoring scenario would have been in-
feasible. Therefore, we resorted to an indoor benchmark
data set denoted as 3DMatch [24], which is an RGB-D data
set consisting of 62 real-world indoor scenes ranging from
offices and hotel rooms to tabletops and restrooms. In [5]
we show that the 3DSmoothNet trained only using these
indoor RGB-D data can generalize to outdoor point clouds
acquired using a laser scanner, without any fine-tuning.

Several other 3D learned local feature descriptors, e. g.
[12, 23, 2]were proposed concurrently to 3DSmoothNet and
could be used to infer the putative correspondences for
the approach presented herein. However, as 3DSmoothNet
significantly outperforms the state-of-the-art on indoor as
well as outdoor data [5], we use it hereinafter to infer point-
wise local descriptors and putative correspondences. A
more detailed description of 3DSmoothNet is beyond the
scope of this paper and the interested reader is referred
to [5] for more information.

2.3 NN-based filtering algorithm

In order to obtain a dense displacement vector field, we
do not compute feature descriptors only for some selected
points, i. e. keypoints, but rather for eachpoint in the point
clouds of both epochs. Under the assumption that for each
point from the reference epoch, there is a corresponding
point in the test epoch and that correspondence is prop-
erly measured by the closeness in the feature space, the
displacement vector field can be established by a nearest
neighbor search. However, due to the sampling process
yielding the point clouds, 6-DOF motion and occlusions,
this assumption does not (always) hold. In particular, we
also expect that some parts of the area may be deformed
too much and may not be recognizable anymore. This, in
conjunction with false correspondences due to repeating
structures, changes in point cloud density and noise of the
point clouds, results in an initial set of correspondences,
which is very noisy and typically contains outliers.

We therefore propose a binary classification algorithm
to identify the putative correspondences as inliers or out-
liers. The proposed algorithm is based on the local con-
sistency assumption, i. e. locally the point clouds are as-
sumed to (approximately) represent a rigid body rather
than a significantly deformed surface. However this as-
sumption does not hold on the discontinuities of the dis-
placement vector field and edges of the rigid bodies. We
therefore impose this constraint only inside the boundary
aware supervoxels (see Section 2.4). The local consistency
assumption is also crucial for the good performance of

the local feature descriptors. More formally, consider two
point clouds P ∈ ℝN×3 andQ ∈ ℝM×3, representing the test
and reference epoch respectively. Let (P)i = pi = [xi, yi, zi]
and (Q)j = qj = [x�j , y

�
j , z
�
j ] represent the coordinate vectors

of individual points of the point clouds. If each point of
the point cloud P is matched to its nearest neighbor in the
point cloudQ based on the descriptor distance, a group of
Nc correspondences ci is obtained and can be written in
matrix form as

X� = [c1; ⋅ ⋅ ⋅ ; cNc ]

ci = [xi, yi, zi, x
�
i , y
�
i , z
�
i ] (2)

In order to avoid problems due to large baselines for rota-
tion,we scale all the coordinates inX� to the interval [−1, 1]
as X := X� ⊘ (J ⊙ max(|X�|)) ∈ ℝN

c×6, where J ∈ ℝN
c×6 is a

matrix of ones and⊙ and⊘denote theHadamard (element-
wise) multiplication and division, respectively. X contain-
ing only the scaled coordinates of the putative correspon-
dences, represents the input to the filtering algorithm fθ,
which maps X to a vector of scores

s = [s1; ⋅ ⋅ ⋅ ; sNc ] (3)

where si ∈ [0, 1], with si = 0 indicating (strongly) that the
correspondence ci is an outlier and si = 1 that it is an inlier.
We approximate fθ using a feed-forward NN.

2.3.1 Network architecture

The proposed network architecture is based on a deep
residual learning framework [9]. Instead of learning the
desired mapping H(O) the residual network (ResNet) lay-
ers (Figure 2) aim at learning the residualmappingF(O) :=
H(O) − O, where O denotes the output of the previous
layer [9]. Thereby, the original mapping is recast into
H(O) = F(O) + O, which can be realized by the feed-
forward NNs using shortcut connections [19, 9]. These
shortcut connections skip one or more layers of the net-
work and in the case of ResNet layers just perform the
identity mapping (Figure 2). Residual learning framework
eases the optimization of the parameters and improves the
performance of the traditional networks [9].

Our architecture (Figure 3), inspired by [16], consists
of a 128-dimensional weight-sharing perceptron layer, fol-
lowed by 12 ResNet layers (Figure 2), which are succeeded
by another weight-sharing perceptron layer that reduces
the dimension of each branch (a single putative corre-
spondence) to one. The output of the last layer is passed
through tanh and ReLU activation functions, which map
the inferred score to the [0, 1] range.

Unauthenticated
Download Date | 2/19/20 6:07 PM



Z. Gojcic et al., F2S3: Robustified determination of 3D displacement vector fields using deep learning | 5

Figure 2: A single ResNet layer combines two blocks consisting of
a 128 dimensional (Nl = 128) weight-sharing perceptron (weights
copied for each correspondence) followed by a context normaliza-
tion layer, batch normalization layer and ReLU activation function.
Context normalization explicitly aggregates the information of the
neighboring points within the point cloud pair.

Figure 3: The proposed network architecture, adopted from [16],
consists of 12 ResNet layers (see Figure 2), which are preceded and
followed by a single layer of weight-sharing perceptrons that oper-
ate on each correspondence independently. The last weight-sharing
perceptron is followed by the ReLU and tanh activation functions,
which map the score to the [0, 1] range. For improved readability, we
depict only 3 ResNet layers.

Because of the unordered nature of the point clouds,
the order of the correspondences is arbitrary and permut-
ing the rows of the input X should result in the equiva-
lent permutation of the scores s. To achieve the invariance
to input permutation the weight-sharing perceptrons op-
erate independently on each individual correspondence.1

Because of this, the individual branches of the network do
not obtain the information about the neighboring points

1 This is achieved by copying theweights of the perceptronsNc-times
on the fly and thus making the width of the network variable.

explicitly and the local context is implicitly established us-
ing context normalization (CN) layers (Figure 2) defined
as [16]

CN(Ol) = (Ol − 1 ⊗ μl) ⊘ (1 ⊗ σl) (4)

where Ol ∈ ℝN
c×N l

is the output and N l denotes the num-
ber of neurons of the layer l. μl ∈ ℝNl and σl ∈ ℝNl are
the row-wise mean value and standard deviation of Ol.
1 ∈ ℝN

c
is a vector of ones and ⊗ denotes the Kronecker

product. Contrary to other normalization techniques used
to improve the performance and convergence of NNs (e. g.
batch normalization), CN operates across all correspon-
dences but independently for each point cloud pair (see
Section 2.4) [16]. Because CN layers are a composition of
symmetric functions (mean value and standard deviation)
the permutation invariance of the network is preserved.

Loss function
In order to optimize theparameters of theNN,weminimize
the hybrid loss function

L(θ,X) =
B
∑
n=1

αLb(θ,Xn) + βL
t(θ,Xn) (5)

where Lb is the binary classification loss and Lt is the
transformation loss. θ denotes the parameters of the net-
work and Xn represents a set of putative correspondences
for point cloud pair n in a mini-batch consisting of B train-
ing examples.2 The contribution of both loss functions is
controlled using the hyperparameters α and β. The binary
classification loss penalizes both types of error, the false
positives as well as false negatives. Given Nc

n putative cor-
respondences ci with the corresponding ground truth la-
bels yi it is defined as a binary cross entropy function

Lb =
1
Nc
n

Nc
n

∑
i=1
−yi log(h(Xn)i) − (1 − yi) log(1 − h(Xn)i) (6)

where h(⋅) is a sigmoid function

h(Xn) =
1

1 + exp(−f �θ(Xn))
(7)

and f �θ(Xn) denotes the output of the last weight-sharing
perceptron layer before the tanh andReLU activation func-
tions (Figure 3).

2 Herein, a point cloudpair is represented by all correspondences be-
longing to a single supervoxel (Section 2.4) and a mini-batch denotes
a group of supervoxels that fit into the memory of a GPU.
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Minimizing the classification loss proves robust but
can still let some outliers undetected [16]. Therefore,
additional supervision—supported by the rigid body
assumption—is introduced by penalizing the deviations
from the ground truth rotation matrix R as

Lt = ||R − g(Xn, s)||
2
F (8)

where g(⋅) is a function, which estimates the rotation ma-
trix based on the singular value decomposition of the
weighted covariance matrix ΣXn

= XT
n,1SXn,2, with Xn,1 :=

(Xij)1≤i≤N ,1≤j≤3, Xn,2 := (Xij)1≤i≤N ,4≤j≤6, and S := diag(s) [20].
|| ⋅ ||F is the Frobenius norm.

2.3.2 Optimization

We optimize the parameters of the network using a variant
of the stochastic gradient descent [13] in combinationwith
the same benchmark data set that is used for the train-
ing of 3DSmoothNet, i. e. the 3DMatch data set [24]. The
weights of the network are initialized by sampling from
the truncated zero mean normal distribution and biases
are set to zero.We have empirically discovered that adding
the transformation loss from the start can actually harm
the convergence, because the network is still incapable of
correctly filtering out the outliers, which influence the es-
timation of the rotation matrix. Therefore, we start train-
ing by setting α = 1 and β = 0. In a later stage of train-
ing, when the network can already correctly classify the
majority of the correspondences we change β to 0.1, which
enables additional improvement of the performance. We
train the network using the batch-size of 16 and learning
rate of 0.01. The batch-size is selected such that the data fit
to the memory of the GPU and the learning rate was deter-
mined experimentally using a validation data set. For the
empirical (Section 3) investigations we use a model corre-
sponding to the iteration with the highest performance on
the validation data set.

2.4 Oversegmentation using the supervoxel
approach

In typical geomonitoring applications, parts of the repeat-
edly scanned scene may be stable over time, while others
change due to the flow of earth and debris. Individual ob-
jects may be large enough to be detected as translated and
rotated rigid bodies [4]. This causes discontinuities in the
ground-truth displacement vector field. In order not to vi-
olate the local consistency assumption, the point clouds

can therefore not be analyzed as one object, but rather
have to be segmented into parts that do not cross these
discontinuities. The discontinuities of the displacement
vector field are not know beforehand, but they predomi-
nantly appear at theboundaries of larger objects.We there-
fore use a segmentation algorithm with boundary preser-
vation [15] to segment the point cloud of the reference
epoch into segments, denoted as supervoxels. These seg-
ments are deliberately allowed to be smaller than the ex-
pected actual objects. This over-segmentation is preferred
to object segmentation because it allows the apparent ge-
ometrical changes within an object to be larger than the
changes between objects. With supervoxels, only small,
similar segments are clustered together thus enabling bet-
ter boundary preservation. The supervoxels are obtained
by minimizing the energy function

E(Z) =
N
∑
i=1

N
∑
j=1

zijd(pi,pj) + λ|C(Z) − Ns| (9)

where zij ∈ {0, 1} with zij = 1 if the point pi is a representa-
tive point of a supervoxel and the point pj belongs to that
supervoxel. λ is the adaptive weighting factor and C(Z) is
a function that counts the current number of supervoxels.
The boundary preservation is achieved by incorporating
the cosine similarity along with the traditional Euclidean
distance in the similarity measure

d(pi,pj) = 1 − |npi ⋅ npj | + 0.4
||pi − pj||2

r
(10)

where npi and npj are the normal vectors of the points pi
and pj respectively and r denotes the approximate size of
the supervoxels in terms of a radius, which indirectly sets
the approximate number of segments Ns.

Herein, the over-segmentation is performed only for
the reference epoch and the putative correspondences are
established independently from the segmentation using
the whole point clouds. Following the segmentation, each
supervoxel is fed to the NN-based filtering algorithm as an
individual example, thus satisfying the local consistency
assumption. Finally, the putative correspondences are fil-
tered by rejecting all the correspondences with si strictly
smaller than the classification threshold τc = 0.5 and
the remaining correspondences are concatenated to form
a single point cloud.3 Such a robustly estimated dense dis-
placement vector field can be used as the final output or

3 Empirically, for more than 95% of the putative correspondences,
the si < 0.1 or si > 0.9 in the rockfall simulator example. Therefore,
we do not optimize the classification threshold and use τc = 0.5, if
not explicitly specified differently.
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as an input to an additional smoothing/interpolation al-
gorithm such as the one given in [6].

3 Experiments
In this section we analyze the performance of F2S3, based
on experiments conducted on two data sets. We start with
a detailed analysis on a data set of a rockfall simulator, ac-
quired in a controlled environment with per point ground
truth, before evaluating the generalization capacity on a
real case data set of a landslide located in the Alps. As
baseline algorithms, we use the established C2C, C2M and
M3C2 algorithms implemented in the open source software
CloudCompare4 as well as the raw correspondences estab-
lished in the features space using 3DSmoothNet [5]. Addi-
tionally, we compare the results of the proposed outlier de-
tectionmodule to the results of RANSAC-based [3] filtering.

3.1 Rockfall simulator

The rockfall simulator (Figure 4) is a computer controlled
piece of hardware composed of a rigid frame and a part
that can rigidly translate vertically and rotate about a hor-
izontal axis. The surfaces have a similar texture as rocks.
The simulator allows mimicking a rockfall and was origi-
nally built for educational purposes. The moving part of
the simulator (see Figure 4 right) is equipped with four
mini prisms that can be used to establish the ground truth.
Herein, we consider a scenario in which the moving part
is displaced vertically by about 3 cm. The rockfall simula-
tor was scanned from a distance of about five meters in
two epochs using a Leica MS50. The mean resolution of
the point clouds is 3mm. The ground truth transforma-
tion parameters for the moving part of the simulator were
estimated from high precision polar coordinate measure-
ments to the four mini prisms using the same Leica MS50.

3.1.1 Supervoxel segmentation

The size of the supervoxels, and indirectly also their ap-
proximate number, is controlled with the hyperparameter
r of Eq. 10. According to [15], the object boundaries can
be preserved even if the distances between boundaries are
smaller than the selected value of r. We evaluate the su-
pervoxel segmentation algorithm on the reference epoch

4 https://www.danielgm.net/cc/

Figure 4: Rockfall simulator (left) and a point cloud acquired using
a Leica MS50 (right). Red color shows the moving part and the blue
color the stable part of the simulator. Holes in the red part of the
point cloud show the location of the four mini prisms.

Figure 5: Results of the supervoxel segmentation of the rockfall sim-
ulator point clouds in relation to r. When r is too big the supervoxels
cross the object boundaries (see for example the top right corner of
the right figure). Colors of the supervoxels are selected randomly.

point cloud of the rockfall simulator (Figure 5). This data
set is challenging for the supervoxel segmentation algo-
rithm because individual parts of the simulator are almost
parallel (stable and moving parts) and contribute little to
the cosine similarity of the normal vectors in the dissimi-
laritymeasure (Eq. 10). Therefore, the boundaries can only
be partially preserved, when r gets too big (see Figure 5
right). Based on this qualitative result, we use r = 0.1m
for the rockfall simulator experiments presented herein.

3.1.2 Filtering false correspondences

The results of the proposed NN-based outlier detection al-
gorithm are depicted in Figure 6. The displacement vector
field established in the 3DSmoothNet feature space con-
tains a lot of outliers (Figure 6 left), which can be success-
fully removed using the proposed F2S3 (Figure 6 right).
By directly using the model trained on the indoor scenes,
more than 94% of the points can be classified correctly
as outliers and inliers, while less than 5% are false neg-
atives and about 1% false positives. Here, a false negative
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Figure 6: Results of the correspondence search in the feature space,
before (left) and after (right) filtering. Red color denotes the outlier
and the green color the inlier correspondences.

means that the ground truth label indicates an inlier i. e.,
the correspondence established in 3DSmoothNet feature
space is actually correct, but the algorithm classifies the
correspondence as wrong. Conversely, a false positive de-
notes that the correspondence established in 3DSmooth-
Net feature space is wrong but the algorithm classifies the
correspondence as correct. The ground truth labels for the
correspondences were established by considering the de-
viations between the putative and the ground truth corre-
sponding point. If this deviation is less than 7.5mm (2.5
times the mean resolution), the correspondence is labeled
as an inlier and otherwise as an outlier.

3.1.3 Pointwise classification into stable and moved
parts

We continue the comparison to the baseline algorithms by
evaluating the capability of the algorithms to classify the
point clouds intomovedand stableparts. Theground truth
labels are defined manually and can be seen in Figure 4
(right). For the C2C, C2M and M3C2 analysis we compute
the displacements using the implementation available in
CloudCompare and infer the labels based on the magni-
tude of the displacements. Specifically, all the points for
which the estimateddisplacement is larger than7.5mm(as
above) are classified as moved and the rest are classified
as stable. We compare these results to the displacement
vectors established using 3DSmoothNet and the proposed
F2S3. After the outlier detection step of F2S3, only a subset
of points (inliers) are remaining and can be classified as
stable or moved based on the aforementioned threshold.
To ensure a fair comparison, we infer the labels for the re-
maining points (outliers) based on the majority voting in-
side individual supervoxels.

Figure 7: Confusion matrix. We use the algorithms to classify the
points of the rockfall simulator into two classes: moved and stable.
While the traditional algorithms perform better in stable areas and
fail in the moved ones, the performance of 3DSmoothNet is better
in the moved areas. The F2S3 achieves a consistent performance
irrespective of the ground truth class. The results are shown in per-
centage.

The results are depicted in Figure 7.5 Whereas all
the traditional algorithms achieve high accuracy for the
ground truth class “stable”, they fail in classifying the
moved areas correctly. Indeed, they classify more than
70% of the moved points as stable. On the other hand,
when using 3DSmoothNet, more than 26% of the stable
points are falsely classified asmoved. This is caused by us-
ing the magnitude of the displacement vectors as the clas-
sification rule, which results in classifying a majority of
all false correspondences asmoved. Finally, F2S3 achieves
more than 98% accuracy for both classes and its perfor-
mance is equal for stable and moving parts.

3.1.4 Quantitative analysis of the displacements

The goal of the point cloud based deformation analy-
sis is not only detecting which parts of the scenery have
moved/changed andwhich have remained stable, but also
the quantification of the displacements. Because some of

5 We omit the results of C2M, which are very similar to the results of
M3C2, in Figure 7.
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Figure 8: Deviations from the ground truth. For clarity, we only show
the results of the F2S3 and C2C.

the baseline algorithms output only the magnitudes of the
displacements and not full 3D displacement vectors, we
use the residuals between the estimated and the ground
truth displacement magnitude as the performance metric.
For F2S3, only the correspondences that were classified as
inliers (67.5%of all points) are considered in this analysis.
Figure 8 and Table 1 show the results of the quantitative
analysis of the estimated displacements using the rock-
fall simulator point cloud data. The residuals yielded by
F2S3 are normally distributed with a mean value of 0mm
and a standard deviation of 3mm. On the other hand, the
residuals of C2C show a multimodal distribution with one
peak centered at 0mm and one at approximately 3 cm,
which corresponds to the actual displacement of the mov-
ing part, indicating that this displacement is not detected
by the C2C analysis. For improved readability we do not
show the results of C2M, M3C2 and 3DSmoothNet in Fig-
ure 8, but the C2M andM3C2 deviations also show amulti-
modal distribution similar to the one of C2C, whereas the
distribution of 3DSmoothNet resembles the one from F2S3
but with a very long tail (outliers). Table 1 summarizes the
results for all the methods, where the precision denotes
the ratio between the number of correct correspondences
(i. e. the residuals smaller than 7.5mm) and the number
of all correspondences. Similarly, recall denotes the ratio
between the number of correct correspondences and the
number of all points in the reference epoch. For the tradi-
tional methods the precision equals approximately 26%,
which corresponds to the ratio of the stable points within
the entire scene. In fact, as also indicated by the results de-
noted in Figure 7, the majority of the scenery is identified
as stable using these standard algorithms, irrespective of
the ground truth motion.

Our method instead performs equally well in stable
and non-stable areas and achieves a much higher preci-
sion and recall, indicating thatmore than 98%of the iden-

Table 1: Precision and recall of the estimated displacement magni-
tudes by different methods for the rockfall simulator point clouds.

Precision [%] Recall [%]

C2C 26.2 26.2
C2M 25.8 25.8
M3C2 26.5 25.8
3DSmoothNet 73.3 73.3
RANSAC-based 98.0 69.9
F2S3 98.8 66.7
F2S3 (vector distance) 98.4 66.5

tified correspondences are correct. However, this is only
possible because our approach rejects putative correspon-
dences identified as outliers. Therefore, the recall cannot
achieve 100% but rather indicates the percentage of the
point cloud with sufficiently unique features. Moreover,
the difference between the recall of F2S3 and 3DSmooth-
Net denotes the percentage of the correct correspondences
established by 3DSmoothNet that were classified as out-
liers by the proposed outlier detection step.

Because our method outputs real 3D displacement
vectors, we also include the analysis based on the dis-
tances between the estimated and the ground truth dis-
placement vectors. Table 1 shows that not only ourmethod
reaches a significantly higher precision and recall, the
small drop inperformancebetween“F2S3” and“F2S3 (vec-
tor distance)” highlights that it can also efficiently esti-
mate the real 3D displacement vectors.

3.1.5 Comparison to RANSAC-based filtering

During training of the NN-based filtering algorithm we
provide supervision through the ground truth transforma-
tion parameters of the congruence transformation (Eq. 8).
Thereby, we make a (soft) assumption that the motion of
each individual point pair or supervoxel can be explained
by a single set of transformation parameters. Considering
this assumption the filtering of the correspondences can
also be formulated in the RANSAC framework.

Specifically, we consider each supervoxel indepen-
dently and use the 3D congruent transformation model.
Based on the selected probability p := 0.99 to sample at
least three correct correspondences the required number
of RANSAC iterations equals 20000. The relation

NR
i =

log(1 − p)
log(1 − γ3i )

(11)

which gives a number of iterations NR
i needed by RANSAC

to sample at least three correct correspondences with
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Table 2: Time complexity of the RANSAC-based and the proposed
outlier detection step of F2S3 for the Rockfall simulator point
clouds. We report the mean value and standard deviation of 20
runs. Initialization denotes the loading of the weights for the NN-
based algorithm in the memory, which only has to be performed a
single time independent of the number of point cloud pairs that are
analyzed.

Initialization [s] Classification [s]
Mean STD Mean STD

RANSAC-based / / 17.1 4.0
F2S3 8.6 0.1 2.5 0.1

probability p, can be used to perform a dynamic check
after each iteration i. γi denotes the inlier ratio and is in
our case computed as a ratio between the cardinality of
the largest set of inliers obtained up to the iteration i and
the number of all putative correspondences. In order to
avoid excessive iterations the RANSAC process is stopped
if NR

i < i. All putative correspondences are classified as
inliers if their Euclidean distance, after applying the es-
timated transformation parameters, is smaller than the
RANSAC classification threshold τR, which is set to 7.5mm
for the rockfall simulator point clouds.

The results of the RANSAC-based filtering for Rock-
fall simulator point clouds are presented in Table 1 and
the comparison of time complexity is given in Table 2.
RANSAC-based filtering algorithm achieves a comparable
precision and recall as the NN-based filtering algorithm
proposed herein. Table 2 shows that even when analyzing
a point cloud pair with few points and high percentage of
inlier correspondences, the RANSAC-based filtering algo-
rithm is approximately 2 times slower than the algorithm
proposed herein.

3.2 Real case landslide in the Alps

The second data set used for demonstration herein con-
sists of point clouds of a real landslide located in the
Swiss Alps (Figure 9). The point clouds were acquired
using a drone based LiDAR system (Riegl RiCOPTER) in
two epochs about 2.5 months apart (July and September
2018). The point clouds of both epochswere georeferenced
and the registration is hereinafter considered as error free.
Based on the GPS and total station measurements, which
are available for selected points on the edges of the land-
slide, displacements in the range of a couple of centime-
ters (bottom part) to a couple of decimeters (top part) were
expected. Due to the large amount of data—the reference

Figure 9: Reference point cloud of the landslide located in the Swiss
Alps acquired using a drone based LiDAR system. We perform the
deformation analysis for the areas marked with the red (Area 1) and
blue (Area 2) color.

epochhasmore thanonebillionpoints—we focus the anal-
ysis on the two selected areas for which also a ground
truth is available through the high precision total station
or GPS measurements (Area 1/blue and Area2/red of Fig-
ure 9). Eachof these areas contains approximately onemil-
lion points per epoch.

3.2.1 Quantitative analysis of the displacements

We follow the same evaluation procedure as in the rock-
fall simulator case. Specifically, we compare our method
to C2C, C2M and M3C2. For improving the readability, we
refrain from showing the results of 3DSmoothNet, which
yields a heavily tailed distribution of the residuals, also in
this example. Additionally, we compare the results to the
ground truth, which is available in form of a displacement
magnitude for a single point in the middle of Area 1 and a
single point in the vicinity of Area 2. As we analyze rela-
tively small areas, we assume that the displacement mag-
nitude of these ground truth points is representative for all
the points within the respective area. For the supervoxel
segmentation we use r = 1.5m for Area 1 and r = 2.0m for
Area 2, which is approximately 30 times the resolution of
the point clouds in the respective area and corresponds to
the ratio used in the analysis of the rockfall simulator.

The results are depicted in Figure 10 and summarized
in Table 3.When compared to the ground truth, traditional
methods significantly underestimate themagnitude of the
displacements. The results of C2M andM3C2 are very simi-
lar, which is to be expected as bothmethods search for the
corresponding points in the direction of the normal vector
of either the underlying triangulated surface of plane fit-
ted to the neighborhood of the point. Indeed, M3C2 could
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Figure 10: Histogram of the displacement magnitudes for Area 1
(left) and Area 2 (right). Traditional methods greatly underestimate
the magnitude of the displacements.

Table 3:Median displacement magnitude. The results of our method
(τc = 0.5) for Area 2 are slightly biased due to the long tail of the
displacement magnitude distribution.

Method Area 1 Area 2
Displ. [m] Displ. [m]

C2C 0.119 0.118
C2M 0.144 0.117
M3C2 0.160 0.113
F2S3 (τc = 0.5) 0.307 0.464
F2S3 (τc = 1) 0.304 0.439
Ground truth 0.306 0.414

be understood as a robuster version of C2M, as the plane
fitting smooths out the noise of the point clouds. Further-
more, Table 3 shows that while the ground truth displace-
ment for Area 2 is larger than the one for Area 1, all tradi-
tional methods estimate lower displacement magnitudes
for Area 2. This hints, that the traditional methods are not
only dependent on the magnitude of the displacements,
but rather also on the type of the motion, point cloud res-
olution and possibly surface roughness. Further analysis
of these dependencies is left for future work. On the other
hand, our method can accurately estimate the displace-
ment magnitudes with an error smaller than (Area 1) or
close to (Area 2) 5% of the actual motion. This error corre-
sponds to less than half of themean resolution of the point
clouds.

3.2.2 Outlier detection analysis

The lower resolution and higher noise of the point clouds,
combinedwith the largermotion, presumablyhave anega-
tive effect on the correspondence search and on the outlier
detection algorithm. This results in a long tail of the dis-

tribution of the displacement magnitudes, especially for
Area 2, which is to a large extent covered with small gravel
with no distinct features. We therefore perform an addi-
tional analysis in which we assume that the ground truth
displacement magnitude ||dGT|| = 0.414m is representa-
tive for all the points in the Area 2. Assuming the stan-
dard deviation of the estimated displacement magnitudes
σ||d̂|| ≈ 0.1m for all the methods in Table 3, we label all
correspondences ci for which

||dGT|| − 3σ||d̂|| ≤ ||d̂ci || ≤ ||dGT|| + 3σ||d̂|| (12)

as correct and the rest as wrong. Considering these labels,
65%of the correspondences established using 3DSmooth-
Net without outlier detection are wrong for Area 2. After
the outlier detection with the approach proposed herein
(using τc = 0.5), more than 81% of the inliers are actu-
ally correct correspondences and less than 19%arewrong,
with a recall of 33%. As shown in Figure 11 (left), most
of the false positives left after the outlier detection lie in
the areas covered with gravel (left and right sides of the
ridge). Due to the relative large number of false positives,
we analyze the effect of increasing the threshold τc to 1,
i. e. accepting only the correspondences with very high
confidence.6 With this, the percentage of correct corre-
spondences can be increased to 98.5% with a recall of
27.7% (Figure 11). This result indicates that a scene spe-
cific threshold might be beneficial; the appropriate choice
is a topic for future research.

3.2.3 Comparison to RANSAC-based filtering

Finally, we compare the results of the proposed approach
to the RANSAC-based filtering as described in Section 3.1.5.
We set the RANSAC classification threshold τR to 20 cm,
which corresponds to two sigma standard deviation of the
estimated displacement magnitudes (see Section 3.2.2).
The comparison of the time performance for both Area 1
and Area 2 is shown in Table 4 and the results for Area
2 are graphically depicted in Figure 11. While for Area 2,
RANSAC-based filtering achieves a higher recall of 31.1%
compared to 27.7%, it also yields a larger percent of false
positives 4.8% compared to 1.39% of our method.

Furthermore, the time complexity of the RANSAC-
based filtering algorithm is strongly dependent on the per-
centage of inliers and, when compared to our method, the

6 To avoid the quantization errors we use 1 − 1 ⋅ 10−5 in our code.
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Figure 11: Point cloud of the Area 2 after the outlier detection algorithm using the algorithm proposed herein with τc = 0.5 (left) and τc = 1
(middle) and with RANSAC-based outlier detection algorithm (right). Blue color denotes the true positives, red color the false positives and
grey color the negatives. While yielding a slightly higher recall, RANSAC-based outlier detection also yields more false positives. Note how
the false positives mostly lie on the flat areas covered by gravel and small cobbles with no distinctive features. Figure best seen in color.

filtering can be up to 300 times slower (see Area 2 in Ta-
ble 4) if only approximately 30%of theputative correspon-
dences are actual inliers. On the other hand, our method
is independent of the inlier precentage and requires no it-
erations (inference is performed in a single forward pass).

This high time complexity strongly limits the applica-
bility of the RANSAC-based outlier detection for the near
real-time deformation monitoring of large natural scenes.
For example, the whole point clouds of the landslide (Fig-
ure 9) were split into more than 400 areas for the anal-
ysis. If one would replace our method with the RANSAC-
based filtering, the computation time of the outlier detec-
tion, would increase to 20 days while the NN-based ap-
proach presented herein only takes 2 hours, assuming the
mean classification time of Area 1 and Area 2 shown in Ta-
ble 2.

4 Conclusion

In this work, we have proposed F2S3 a newmethod for de-
formation analysis based on point cloud data. We comple-
ment the recent idea of establishing the correspondences
in the feature space with an outlier detection algorithm,
which classifies the putative correspondences into inliers
andoutliers. Using twodifferent data sets,wehighlight the
shortcomings of the traditional approaches, while show-
ing that our approach correctly estimates 3D displacement
vectors and its outlier detection step is very time efficient.

In the future work we will perform an extensive sensi-
tivity analysis of the available deformation analysis meth-
ods for point cloud data, regarding the point cloud reso-
lution, magnitude and type of the motion, as well as the
available geometric and radiometric features of the surface

Table 4: Time complexity of the RANSAC-based and the proposed
outlier detection step of F2S3 for the point clouds of the real land-
slide in the Swiss Alps. Initialization denotes the loading of the
weights for the NN-based algorithm in the memory, which only has
to be performed a single time independent of the number of point
cloud pairs that are analyzed.

Initialization [s] Classification [s]
Area 1 Area 2 Area 1 Area 2

RANSAC-based / / 1159.8 7573.1
F2S3 8.3 8.5 13.2 25.4

in a simulated environment. The results of this analysis
will provide a better understanding about the limitations
of individualmethods and could serve as a guideline, hint-
ing at which method to use for certain application cases.
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